
feuerverzinkt

Anwendung

- Schnelle und rationelle Befestigung von Rohrsträngen und Rohrtrassen
- Ideal auch als Tragkonstruktion für Lüftungskanäle

Ihre Vorteile

- Rückenlochung auf die Abstände der im Schiffbau verwendeten Wulstflachstähle abgestimmt
- Verzahnung im Schienenschlitz zur formschlüssigen Fixierung von Anbauteilen
- Hohe Biegesteifigkeit durch günstige Profilquerschnitte
- Für sichere und seiten- und höhenverstellbare Befestigungen
- Zum Aufbau statisch richtig bemessener Konstruktionen mittels vielfältiger Verbindungsteile
- Stabiles quadratisches C-Profil vereint kompakte Bauform mit optimaler Tragfähigkeit

Profil 41/31/2,0

Produktleistungen

				MANUTACIONE!
Profil	Länge	Artikel-Nr.	Abgabeeinheit	Mengeneinheit
	[mm]			
41/31/2,0 BV	3.000	165780	1	Stück
	6.000	165781		

MPR-Montageschienen BV fertigen wir auf Anfrage auch in weiteren Werkstoff-/Oberflächenausführungen. Diese Produkte werden auftragsbezogen gefertigt. Mindestmengen und Lieferzeiten auf Anfrage.

Technische Daten

Technische Daten der Profile:

Produktle	eistungen									
Profil	Material	Oberfläche	Zul. Stahl-	Verfügbare	Profil-ge-	Profilquer-	Trägheits	smoment	Widerstan	dsmoment
Y			spannung σ _{zul.} [N/mm²]	Gewinde- platten*	wicht [kg/m]	schnitt [cm²]	ly [cm⁴]	lz [cm⁴]	Wy [cm³]	Wz [cm³]
41/31/2,0 BV	S250 GD+Z	feuer- verzinkt	162	M8, M10, M12, M16	1,85	2,1	2,5906	6,0922	1,622	2,972

Tragfähigkeitswerte der Profile für Biegungen um die Y-Achse in [N]:

Profil	0,5	1,0	L [1,5	m] 2,0	4,0	6,0	0,5	1,0	L [1,5	m] 2,0	4,0	6,0
Y			L/2	,F					↓F -L/3-+-L/			
41/31/2,0 BV	2.101	1.044	563	304	36	-	1.573	760	331	178	21	-
Y			↓ F ↓	F ¥F					↓ F ↓ F	₩F ₩F		
41/31/2,0 BV	1.050	522	237	128	15	-	876	428	186	100	12	-

Die ermittelten Lasten gelten für statisch ruhende Lasten. Berechnung auf Grundlage des Eurocode (EC3). Der Sicherheitsbeiwert y = 1,54 berücksichtigt die Sicherheits- und Kombinationsbeiwerte sowie den Sicherheitsbeiwert des Materials. Bei den angegebenen Werten werden die zulässige Stahlspannung gemäß Tabelle sowie die maximale zulässige Durchbiegung L/200 unter Berücksichtigung des Eigengewichtes nicht überschritten.

Technische Daten

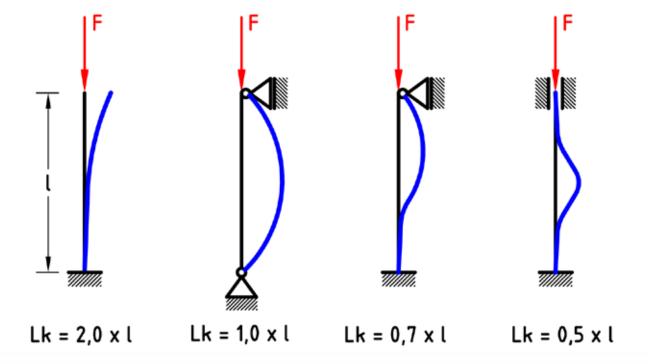
Zulässige Knicklasten für Profile in [N]:

Zulassige Kilicklastell für Profile ill [N].	
Knicklänge Lk [mm]	41/31/2,0 BV
200	34.075
300	33.007
400	31.779
500	30.439
600	28.942
700	27.255
800	25.376
900	23.345
1.000	21.247
1.100	19.183
1.200	17.238
1.300	15.463
1.400 1.500	13.877 12.477
1.600	11.251
1.700	10.178
1.800	9.239
1.900	8.417
2.000	7.694
2.100	7.057
2.200	6.493
2.300	5.992
2.400	5.546
2.500	5.146
2.600	4.788
2.700	4.465
2.800	4.173
2.900	3.909
3.000	3.669
3.100	3.450
3.200	3.250 3.067
3.300 3.400	2.898
3.500	2.743
3.600	2.601
3.700	2.469
3.800	2.346
3.900	2.233
4.000	2.127
4.100	2.029
4.200	1.938
4.300	1.852
4.400	1.772
4.500	1.697
4.600	1.627
4.700	1.561
4.800 4.900	1.499 1.441
5.000	1.385
5.100	1.333
5.200	1.284
5.300	1.238
5.400	1.194
5.500	1.152
5.600	1.113
5.700	1.075
5.800	1.039
5.900	1.005
6.000	973

Technische Daten

Knicklasten nach DIN EN 1993-1-1 Abschnitte 6.2 und 6.3.

Die Tabellenwerte gelten für volltragende Querschnitte und zentrische Lasteinleitung! Der mögliche geringere Schlankheitsgrad für Drillknicken und Biegedrillknicken ist gesondert zu untersuchen!


Betrachtet wird Knicken um die z-Achse und die y-Achse.

Die ungünstigste Knicklast ist tabelliert.

Der Sicherheitsbeiwert γ = 1,54 berücksichtigt die Sicherheits- und Kombinationsbeiwerte, sowie den Sicherheitsbeiwert des Materials.

In Abhängigkeit von den Lagerungsbedingungen und der Stablänge I entsprechend der Abbildung die maßgebende Knicklänge Lk ermitteln.

Mit Lk aus der Tabelle die Knicklast F ablesen.

